
Admin John

Initial reconnaissance using nmap shows that John's workstation has three open ports - 22
for SSH, 80 for a webserver and port 23000 whose purpose is unknown at this point.

Querying the webserver reveals that it probably uses PHP.

Using the information above and running gobuster against the webserver with the
dirb/big.txt wordlist along with the PHP extension finds two interesting files -
environment.php and mybackup.php .

The environment.php page shows the server's uname , disk usage and running processes.
From the process list, it is apparent that the open port 23000 seen previously is a SSH-
tunnelled SOCKS proxy. This information will come in handy later.

The page mybackup.php reveals that there's a backup process running every 10 minutes
and the backup is stored on a remote server with IP 10.99.24.100 .

Waiting for the right time and refreshing the page with the process list at the right time when
the backup process runs leaks SMB credentials to the backup server, as shown below.

The leaked credentials are backuper : Bprn5ibLF4KNS4GR5dt4 . Using these credentials,
along with the smbclient command, it is trivial to download the saved backup file.

Unfortunately, the flag.txt file is excluded from the backup as noted on the mybackup.php
page. Out of the files saved in the backup, the most interesting one is the user's SSH private
key, whose path is home/john@tcc.local/.ssh/id_rsa .

$ tar -xvf backup-home.tgz

home/

home/john@tcc.local/

home/john@tcc.local/.mozilla/

home/john@tcc.local/.mozilla/firefox/

...

home/john@tcc.local/.ssh/

home/john@tcc.local/.ssh/authorized_keys

home/john@tcc.local/.ssh/id_rsa <<<<<<<<<<<<<<<

home/john@tcc.local/.ssh/known_hosts

Examining the private key with ssh-keygen unfortunately shows that the key is protected
with a password.

To try and crack the private key's password, it is first necessary to extract the crackable hash
using the ssh2john tool.

In this case, the preference was to use the hashcat tool, which meant the hash file needed
to be altered slightly, i.e. removing the file name from the beginning of the file, like shown
below.

Now, to try and crack the hash using hashcat along with a ruleset called
OneRuleToRuleThemStill and the rockyou wordlist, the following command was used.

After a few seconds, the password Enterprise2215 is cracked.

home/john@tcc.local/.ssh/id_rsa.pub

home/john@tcc.local/.selected_editor

$.\hashcat.exe -r ..\wordlists\OneRuleToRuleThemStill.rule .\id_rsa.hash

..\wordlists\rockyou.txt

https://hashcat.net/hashcat/
https://github.com/stealthsploit/OneRuleToRuleThemStill

Examining the .ssh folder closer, the authorized_keys file contains a single line which
specifies that once the private key is used to log in, the command cat
/home/john@tcc.local/flag.txt is executed, hopefully printing the flag. At the same time,
the key is restricted to be only used to log in from the IP address 10.99.24.100 .

The address above is the address of the other server to which the server backup was
uploaded as well as where the SSH tunnel with the exposed SOCKS proxy on port 23000 is

pointed at. This means that it is possible to access the SSH server from the specified IP
address using proxychains .

Using the proxychains configuration shown above, it is possible to log in to John's user
account (note that the username is john@tcc.local , not just john) and get the flag:
FLAG{sIej-5d9a-aIbh-v4qH} .

